241 research outputs found

    A comparison between probabilistic and Dempster-Shafer Theory approaches to Model Uncertainty Analysis in the Performance Assessment of Radioactive Waste Repositories

    No full text
    Model uncertainty is a primary source of uncertainty in the assessment of the performance of repositories for the disposal of nuclear wastes, due to the complexity of the system and the large spatial and temporal scales involved. This work considers multiple assumptions on the system behavior and corresponding alternative plausible modeling hypotheses. To characterize the uncertainty in the correctness of the different hypotheses, the opinions of different experts are treated probabilistically or, in alternative, by the belief and plausibility functions of the Dempster-Shafer theory. A comparison is made with reference to a flow model for the evaluation of the hydraulic head distributions present at a radioactive waste repository site. Three experts are assumed available for the evaluation of the uncertainties associated with the hydrogeological properties of the repository and the groundwater flow mechanisms

    Guest Editorial

    Get PDF

    A belief function theory based approach to combining different representation of uncertainty in prognostics

    Get PDF
    International audienceIn this work, we consider two prognostic approaches for the prediction of the remaining useful life (RUL) of degrading equipment. The first approach is based on Gaussian Process Regression (GPR) and provides the probability distribution of the equipment RUL; the second approach adopts a Similarity-Based Regression (SBR) method for the RUL prediction and belief function theory for modeling the uncertainty on the prediction. The performance of the two approaches is comparable and we propose a method for combining their outcomes in an ensemble. The least commitment principle is adopted to transform the RUL probability density function supplied by the GPR method into a belief density function. Then, the Dempster's rule is used to aggregate the belief assignments provided by the GPR and the SBR approaches. The ensemble method is applied to the problem of predicting the RUL of filters used to clean the sea water entering the condenser of the boiling water reactor (BWR) in a Swedish nuclear power plant. The results by the ensemble method are shown to be more satisfactory than that provided by the individual GPR and SBR approaches from the point of view of the representation of the uncertainty in the RUL prediction

    Bagged ensemble of Fuzzy C-Means classifiers for nuclear transient identification

    Get PDF
    This paper presents an ensemble-based scheme for nuclear transient identification. The approach adopted to construct the ensemble of classifiers is bagging; the novelty consists in using supervised fuzzy C-means (FCM) classifiers as base classifiers of the ensemble. The performance of the proposed classification scheme has been verified by comparison with a single supervised, evolutionary-optimized FCM classifier with respect of the task of classifying artificial datasets. The results obtained indicate that in the cases of datasets of large or very small sizes and/or complex decision boundaries, the bagging ensembles can improve classification accuracy. Then, the approach has been applied to the identification of simulated transients in the feedwater system of a boiling water reactor (BWR)

    Unsupervised Clustering for Fault Diagnosis in Nuclear Power Plant Components

    No full text
    International audienceThe development of empirical classification models for fault diagnosis usually requires a process of training based on a set of examples. In practice, data collected during plant operation contain signals measured in faulty conditions, but they are 'unlabeled', i.e., the indication of the type of fault is usually not available. Then, the objective of the present work is to develop a methodology for the identification of transients of similar characteristics, under the conjecture that faults of the same type lead to similar behavior in the measured signals. The proposed methodology is based on the combined use of Haar wavelet transform, fuzzy similarity, spectral clustering and the Fuzzy C-Means algorithm. A procedure for interpreting the fault cause originating the similar transients is proposed, based on the identification of prototypical behaviors. Its performance is tested with respect to an artificial case study and then applied on transients originated by different faults in the pressurizer of a nuclear power reactor

    Bagged ensemble of Fuzzy C-Means classifiers for nuclear transient identification

    Get PDF
    This paper presents an ensemble-based scheme for nuclear transient identification. The approach adopted to construct the ensemble of classifiers is bagging; the novelty consists in using supervised fuzzy C-means (FCM) classifiers as base classifiers of the ensemble. The performance of the proposed classification scheme has been verified by comparison with a single supervised, evolutionary-optimized FCM classifier with respect of the task of classifying artificial datasets. The results obtained indicate that in the cases of datasets of large or very small sizes and/or complex decision boundaries, the bagging ensembles can improve classification accuracy. Then, the approach has been applied to the identification of simulated transients in the feedwater system of a boiling water reactor (BWR)

    Interacting multiple-models, state augmented Particle Filtering for fault diagnostics

    Get PDF
    International audienceParticle Filtering (PF) is a model-based, filtering technique, which has drawn the attention of the Prognostic and Health Management (PHM) community due to its applicability to nonlinear models with non-additive and non-Gaussian noise. When multiple physical models can describe the evolution of the degradation of a component, the PF approach can be based on Multiple Swarms (MS) of particles, each one evolving according to a different model, from which to select the most accurate a posteriori distribution. However, MS are highly computational demanding due to the large number of particles to simulate. In this work, to tackle the problem we have developed a PF approach based on the introduction of an augmented discrete state identifying the physical model describing the component evolution, which allows to detect the occurrence of abnormal conditions and identifying the degradation mechanism causing it. A crack growth degradation problem has been considered to prove the effectiveness of the proposed method in the detection of the crack initiation and the identification of the occurring degradation mechanism. The comparison of the obtained results with that of a literature MS method and of an empirical statistical test has shown that the proposed method provides both an early detection of the crack initiation, and an accurate and early identification of the degradation mechanism. A reduction of the computational cost is also achieved.

    Modeling the Effects of Maintenance on the degradation of a Water-feeding Turbo-pump of a Nuclear Power Plant

    No full text
    International audienceThis work addresses the modelling of the effects of maintenance on the degradation of an electric power plant component. This is done within a modelling framework previously proposed by the authors, of which the distinguishing feature is the characterization of the component living conditions by influencing factors (IFs), i.e. conditioning aspects of the component life that influence its degradation. The original fuzzy logic-based modelling framework includes maintenance as an IF; this requires one to jointly model its effects on the component degradation together with those of the other influencing factors. This may not come natural to the experts who are requested to provide the if-then linguistic rules at the basis of the fuzzy model linking the IFs with the component degradation state. An alternative modelling approach is proposed in this work, which does not consider maintenance as an IF that directly impacts on the degradation but as an external action that affects the state of the other IFs. By way of an example regarding the propagation of a crack in a water-feeding turbo-pump of a nuclear power plant, the approach is shown to properly model the maintenance actions based on information that can be more easily elicited from experts

    Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions

    Get PDF
    Link to publishers version: 10.1016/j.ress.2016.03.004We consider the assessment of the availability of oil and gas processing facilities operating under Arctic conditions. The novelty of the work lies in modelling the time-dependent effects of environmental conditions on the components failure and repair rates. This is done by introducing weather-dependent multiplicative factors, which can be estimated by expert judgements given the scarce data available from Arctic offshore operations. System availability is assessed considering the equivalent age of the components to account for the impacts of harsh operating conditions on component life history and maintenance duration. The application of the model by direct Monte Carlo simulation is illustrated on an oil processing train operating in Arctic offshore. A scheduled preventive maintenance task is considered to cope with the potential reductions in system availability under harsh operating condition
    • …
    corecore